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1. Introduction

Recently there has been much interest [1, 8, 9, 21] in investigating the spectrum of the
non-selfadjoint Sturm–Liouville problem

−y ′′ + qy = λy λ ∈ C (1.1)

on the interval [0, ∞), where q is both complex valued and bounded. For such q and functions
y ∈ L2[0,∞) it is well known (cf [8]) that it is sufficient to impose a boundary condition only
at 0 in order to make (1.1) into a well-posed eigenvalue problem; for example

y(0) = 0. (1.2)

These conditions will be assumed hereafter without further mention. Further as needed we
shall assume appropriate smoothness conditions on q. We say that the endpoint 0 is a regular
point and infinity a singular point of the interval.

The problem of numerically computing eigenvalues of (1.1), (1.2) when q is real valued
has also received much attention. There are a number of computer codes that perform
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this task. These codes mainly work by transforming (1.1) using Prüfer variables, solving the
resulting ODE in these new variables, then via a shooting method, performing a root finding
operation for λ on the resulting solution until the boundary condition (1.2) is satisfied (see
[4, 12, 17] for further details). A feature of these codes is that they only produce numerical
estimates for eigenvalues without any absolute certainty of accuracy. In order to remedy
this position Brown et al [7] have proposed an algorithm and a computer code that produce
provably correct enclosures for λk , the kth eigenvalue of (1.1), with a self-adjoint boundary
condition at 0 and real q. The method proposed in [7] first reduces the singular problem (1.1)
on [0, ∞), to a regular problem on an interval [0,X],X < ∞, with a λ-dependent boundary
condition at X. This is achieved by Eastham’s diagonalization method (see [6, 10]) which
replaces the solution of (1.1) in [X,∞) by its asymptotic form together with a uniform and
absolute bound εX on the error ε(x) for x � X. This provides a λ-dependent bound on the
solution at X which provides an initial interval-value for an interval ODE solver which is used
to enclose the solution of (1.1) over [0,X]. A shooting method is then used to find the pair
λ−, λ+ which determine an interval [λ−, λ+] in which λk must lie.

It is our intention in this paper to develop a method that will provide bounds for the
eigenvalues of the non-selfadjoint problem (1.1) when q is allowed to be complex. Briefly,
our approach will be to first obtain a floating point approximation to the desired eigenvalue
by truncating the interval [0, ∞) to [0,X], for some X < ∞, then use a numerical procedure,
for example the code [13] to obtain an estimate of the eigenvalue of the resulting regular
problem. This procedure introduces errors both from the interval truncation and also from
the numerical procedure inherent in solving the ODE over a finite interval. These errors must
be both controlled and estimated. The goal of the procedure is to obtain a small box in the
complex plane which will contain the true eigenvalue. The error estimates are computed by
interval arithmetic software in which the rounding errors inherent in numerical calculations
are taken into account and an interval ODE solving procedure is used to obtain an enclosure
for the solution over [0,X]. Finally a fixed point theorem (implemented in interval arithmetic)
is used to bound the truncation error.

We shall show the effectiveness of our method by computing guaranteed enclosures for
the eigenvalues of Squire’s problem

−y ′′ + iαRVy = λy on [0,∞)

where α, R are real constants (wave number and Reynolds number) and V ∈ L∞(0,∞) is
real valued. Moreover, we calculate enclosures for resonances of a particular Schrödinger
operator.

For simplicity we restrict ourselves to the case of the Dirichlet boundary condition (1.2)
although a more general boundary condition would be possible.

2. The operator and its spectral properties

We consider the Sturm–Liouville problem (1.1), (1.2), and we suppose that the following
assumptions are satisfied:

(i) q ∈ L∞[0,∞).

(ii) The limit limx→∞q(x) =: q∞ exists.

(iii) q − q∞ ∈ L1(0,∞).
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Problem (1.1), (1.2) is the spectral problem for the closed linear operator T in L2(0,∞)

given by

D(T ) = {y ∈ L2(0,∞): y ′, y ′′ ∈ L2(0,∞), y(0) = 0} (2.1)

Ty = −y ′′ + qy. (2.2)

The essential spectrum of T is defined as σess(T ) := {λ ∈ C : T − λ is not Fredholm}. Here a
linear operator T is called Fredholm if the dimension of its kernel, nul(T ), and the codimension
of its range, def(T ), are finite (the latter implying that the range is closed, see [11, I.3 and
I.4]).

Theorem 2.1. Under the assumptions (i), (ii) denote

qr,min := inf{Re q(x): x ∈ [0,∞)},
qi,min := inf{Im q(x): x ∈ [0,∞)}, qi,max := sup{Im q(x): x ∈ [0,∞)}.

Then

σess(T ) = {λ ∈ C: λ = t + q∞, t � 0}
and

σ(T ) ⊂ {λ ∈ C: Re λ � qr,min, qi,min � Im λ � qi,max}. (2.3)

Proof. The proof is almost the same as in the well-known self-adjoint case; however, for the
convenience of the reader we present it here. Let T∞ and TN,N ∈ N, be the operators with
domain (2.1) and T∞y = −y ′′ + q∞y and TNy = −y ′′ + qNy, respectively, where

qN(x) =
{
q(x) for 0 � x � N

q∞ for N < x < ∞.

The operator (TN − T∞)(T∞ − (q∞ − 1))−1 is compact since it is an integral operator with
kernel

K(x, t) = 1
2 (exp(−|x − t|) − exp(−x − t))(qN(x) − q∞)

which is square integrable on [0,∞) × [0,∞) since qN − q∞ has compact support. The
sequence (TN −T∞)(T∞ − (q∞ − 1))−1 converges to (T −T∞)(T∞ − (q∞ − 1))−1 uniformly
if N → ∞, which implies that T − T∞ is relatively compact with respect to T∞. Hence
σess(T ) = σess(T∞) = {λ ∈ C: λ = t + q∞, t � 0} and for λ outside this set we have
ind(T − λ) := nul(T − λ) − def(T − λ) = 0.

Because of

(T y, y) =
∫ ∞

0
|y ′(x)|2 dx +

∫ ∞

0
q(x)|y(x)|2 dx y ∈ D(T ) ‖y‖ = 1

the numerical range W(T ) is contained in the right-hand side of (2.3). For λ outside this set
we have nul(T − λ) = 0 and because of ind(T − λ) = 0 also def(T − λ) = 0. Hence λ lies
in the resolvent set of T, i.e., λ ∈ ρ(T ). �

As a consequence, outside the horizontal ray {λ ∈ C: λ = t + q∞, t � 0}, the spectrum of
T consists only of isolated eigenvalues with finite algebraic multiplicity. Because the problem
is non-selfadjoint and q(x) is not assumed to decay at least as fast as exp(−c

√
x) for large

x (c > 0 constant), the essential spectrum may contain spectral singularities [20]; however,
we do not consider these here, but restrict our attention to the isolated eigenvalues outside the
essential spectrum.
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The method which we describe in the next section is applicable whenever one is able to
apply Levinson asymptotics [10, 14] to the problem, in particular, under the assumption (iii),
i.e., q − q∞ ∈ L1(0,∞). A number of transformations exist to deal with the case where
q − q∞ /∈ L1(0,∞) such as the so-called repeated diagonalization technique [5]. One can
even deal with some cases in which q∞ does not exist. However, in this paper, we do not
consider such situations.

By a shift of the spectral parameter we can assume without loss of generality that q∞ = 0.
So we assume for the rest of the paper that

lim
x→∞ q(x) = 0 and q ∈ L1(0,∞). (2.4)

In this case the essential spectrum is the positive real axis.

3. Eigenvalue approximation: theory behind the guaranteed error bounds

In this section we describe our approach to get guaranteed error bounds for approximations of
the eigenvalues of the non-selfadjoint Sturm–Liouville problem (1.1), (1.2). To this end we
replace the function q by a function Q having compact support:

Q(x) :=
{
q(x) for 0 � x � X

0 for X < x < ∞ (3.1)

where X > 0 is fixed, and consider the auxiliary problem

−Y ′′ + QY = �Y on [0,∞) (3.2)

Y (0) = 0. (3.3)

Observe that for x > X we can solve the differential equation −Y ′′ + QY = �Y exactly, and
identify the unique (up to scalar multiplication) L2 solution as the function

exp(−√−�x) x � X Re
√−� > 0.

Thus the eigenvalues of the problem (3.2), (3.3) are precisely the values � ∈ C\[0,∞) for
which there exists a non-trivial solution of the differential equation

−Y ′′ + QY = �Y on [0,X] (3.4)

satisfying the �-dependent boundary conditions

Y (0) = 0 Y ′(X) = −√−�Y(X) Re
√−� > 0. (3.5)

In order to obtain guaranteed error bounds for the eigenvalues of (1.1), (1.2), two steps are
necessary:

Step A: Solving the truncated problem with guaranteed error bounds. We must find the
eigenvalues of (3.4), (3.5) with guaranteed error bounds. We accomplish this by calculating,
with guaranteed error bounds, an analytic function whose zeros are the eigenvalues of
(3.4), (3.5); and we find these zeros using an algorithm based on Rouché’s Theorem, again
implemented with guaranteed error bounds.
Step B: Guaranteed error bounds for the truncation error. For each eigenvalue � of (3.4),
(3.5), step A yields a set R ⊂ C containing �. The aim is to find a neighbourhood C of the
origin in C, controlling the error due to the truncation of the interval, so that

R + C := {r + c: r ∈ R, c ∈ C}
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contains an eigenvalue of (1.1), (1.2). This is achieved by showing that C contains a fixed
point of a certain function, cf theorem 3.1 below.

In the remainder of this section we give a more detailed description of the mathematics behind
steps A and B, starting with step B in section 3.1, followed by step A in section 3.2.

Since in the following we shall rely heavily on (complex) interval arithmetic, we have
summarized the most important features found in a typical software package such as AWA [15]
and VNODE [19] in the appendix. Such packages integrate initial value problems numerically,
starting from interval valued initial conditions, satisfying interval valued differential equations,
and returning interval valued results.

3.1. Guaranteed error bounds for the truncation error (step B)

Let us first assume that an eigenvalue �0 and an eigenfunction Y0 of the problem (3.2), (3.3)
are known exactly. In section 3.1.1 we establish the equivalence of the original eigenvalue
problem to a fixed point problem of a certain function ��0 . Then in section 3.1.2 we show how
this equivalence can be used to obtain an enclosure of an eigenvalue of the original problem
even if an eigenvalue of the truncated problem is not known exactly.

3.1.1. Equivalence to a fixed point problem. Let �0 and Y0 be an eigenvalue and an
eigenfunction of the problem (3.2), (3.3). Suppose that λ ∈ C\[0,∞) and let y2(·, λ) denote
the unique (up to scalar multiplication) L2 solution of (1.1). Then λ is an eigenvalue of the
original problem (1.1), (1.2) if and only if y2(0, λ) = 0. Multiplying (1.1) (with y = y2) by
Y0, then multiplying (3.2) by y2, and subtracting, we obtain

(λ − �0)y2Y0 = (q − Q)y2Y0 + y2Y
′′
0 − y ′′

2 Y0.

Integration by parts now yields

(λ − �0)

∫ ∞

0
y2(x, λ)Y0(x,�0) dx =

∫ ∞

X

q(x)y2(x, λ)Y0(x,�0) dx − y2(0, λ)Y ′
0(0,�0)

where we have exploited the facts that Y0(0,�0) = 0 and q(x) − Q(x) = 0 for 0 � x � X.
Thus

λ − �0 =
∫ ∞
X

q(x)y2(x, λ)Y0(x,�0) dx − y2(0, λ)Y ′
0(0,�0)∫ ∞

0 y2(x, λ)Y0(x,�0) dx
(3.6)

provided the integral appearing in the denominator of the right-hand side is non-zero. We
know that y2(0, λ) = 0 if and only if λ is an eigenvalue of the original problem (1.1), (1.2),
and in this case we have

λ − �0 =
∫ ∞
X

q(x)y2(x, λ)Y0(x,�0) dx∫ ∞
0 y2(x, λ)Y0(x,�0) dx

. (3.7)

Let � ∈ C\[0,∞) and let Y2(·,�) be an L2 solution of (3.2). Then we define the
following function:

��(ε) :=
∫ ∞
X

q(x)y2(x,� + ε)Y2(x,�) dx∫ ∞
0 y2(x,� + ε)Y2(x,�) dx

(3.8)

which is continuous on the domain

D(��) =
{
ε ∈ C: � + ε �∈ [0,∞),

∫ ∞

0
y2(x,� + ε)Y2(x,�) dx �= 0

}
.

With this function we can prove the following fixed point theorem.
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Theorem 3.1. Suppose that �0 ∈ C\[0,∞) is an eigenvalue of (3.2), (3.3) and let
ε ∈ D

(
��0

)
. Then �0 + ε is an eigenvalue of the original problem (1.1), (1.2) if and

only if ε is a fixed point of ��0 .

Proof. It follows from the considerations above that if λ := �0 + ε is an eigenvalue of (1.1),
(1.2), then equation (3.7) is valid, hence ε is a fixed point of ��0 . Conversely, if ε is a fixed
point of ��0 , then (3.7) holds with λ := �0 + ε. Since (3.6) is always true, it follows that
y2(0, λ) = 0. �

3.1.2. Localizing a fixed point. We now look for a set that contains a fixed point of ��0

if �0 is an eigenvalue of the truncated problem (3.4), (3.5). In practice we do not know an
eigenvalue �0 of the truncated problem exactly but only some set R which is guaranteed to
contain an eigenvalue. Moreover, we cannot calculate �� exactly. So we proceed as follows.
Let B be a closed convex set in the complex plane with B ⊂ D(��) for all � ∈ R. We will
see that we can get a closed convex enclosure C which contains the set

�R(B) :=
⋃
�∈R

��(B).

If C ⊂ B and if we know that R contains an eigenvalue �0 of the truncated problem, then

��0(C) ⊂ ��0(B) ⊂ �R(B) ⊂ C (3.9)

which implies that C contains a fixed point of ��0 ; by theorem 3.1 we then conclude that
R + C contains an eigenvalue of the original problem.

Remark 3.2. Of course, one must guess a suitable set B a priori. This can be done by trial and
error or by making estimates based on the eigenvalue condition number, calculated in floating
point arithmetic using any standard discretization method.

In order to get an enclosure C of �R(B), we estimate, for fixed � and ε,

|��(ε)| �
max

x∈[X,∞)
|q(x)| ∫ ∞

X
|y2(x,� + ε)Y2(x,�)| dx

∣∣∫ X

0 y2(x,� + ε)Y2(x,�) dx
∣∣− ∫ ∞

X
|y2(x,� + ε)Y2(x,�)| dx

=
max

x∈[X,∞)
|q(x)| ∫ ∞

X
|y2(x,� + ε) exp(−√−�x)| dx

∣∣∫ X

0 y2(x,� + ε)Y2(x,�) dx
∣∣− ∫ ∞

X
|y2(x,� + ε) exp(−√−�x)| dx

(3.10)

provided the denominator in (3.10) is positive and fixing the normalization

Y2(x,�) = exp(−√−�x) x � X.

We use Levinson asymptotics [10, 14], summarized in the following theorem, for an estimate
of the solution y2.

Theorem 3.3. For λ ∈ C\[0,∞) the L2 solution y2 of (1.1), suitably normalized, satisfies

y2(x, λ) = exp(−√−λx)(1 + η1(x))
(3.11)

y ′
2(x, λ) = −√−λ exp(−√−λx)(1 + η2(x))

in which Re
√−λ > 0 and, for all x � X,

|ηj (x)| � αX

1 − αX

j = 1, 2 αX :=
∫ ∞

X

|q(s)| ds (3.12)

provided only that X is large enough to ensure that αX < 1.
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This allows an immediate estimate of the integral in the numerator and the second integral in
the denominator of (3.10):∫ ∞

X

|y2(x,� + ε) exp(−√−�x)| dx

�
∫ ∞

X

exp
(−x Re

(√−� − ε +
√−�

))
dx(1 + |η1(X)|)

�
exp

(−X Re
(√−� − ε +

√−�
))

Re
(√−� − ε +

√−�
) · 1

1 − αX

=: MX(�, ε). (3.13)

The integral over [0,X] in the denominator in (3.10) must be estimated from below. Unlike the
other integrals, this cannot be done with an explicit expression such as (3.13). The technique
which is used to deal with this is as follows.

Observe that we have initial conditions at x = X for both Y2 and y2:

Y2(x,�) = exp(−√−�X) Y ′
2(x,�) = −√−� exp(−√−�X)

and for y2 we have the conditions (3.11), which can be regarded as ‘interval valued’ initial
conditions since the parameters ηj are constrained by (3.12) to lie in bounded sets which we
can compute in terms of q. Let ỹ2(x,�, ε, κ1, κ2) be the solution of the differential equation

−ỹ ′′
2 + q(x)ỹ2 = (� + ε)ỹ2 x ∈ [0,X] (3.14)

satisfying the initial conditions

ỹ2(X,�, ε, κ1, κ2) = exp
(−√−� − εX

)
(1 + κ1)

ỹ′
2(X,�, ε, κ1, κ2) = −√−� − ε exp

(−√−� − εX
)
(1 + κ2).

For the estimate of (3.10) for � ∈ R, ε ∈ B we need an enclosure of the set

IX(R,B) :=
{∣∣∣∣

∫ X

0
ỹ2(x,�, ε, κ1, κ2)Y2(x,�) dx

∣∣∣∣ : � ∈ R, ε ∈ B, |κi | � αX

1 − αX

}
.

A numerical solver for ODEs based on interval arithmetic (such as VNODE [19] or AWA
[15]) can recover guaranteed enclosing sets for the solutions at every x ∈ [0,X] where the
coefficients in the differential equations and the boundary conditions are interval valued; it
can also compute simultaneously an enclosing set Ĩ X(R,B) ⊃ IX(R,B).

Introducing the set

MX(R,B) := {MX(�, ε): � ∈ R, ε ∈ B}
which can be calculated explicitly (MX(�, ε) was defined in (3.13)), we finally get

|��(ε)| �
max

x∈[X,∞)
|q(x)|sup MX(R,B)

inf Ĩ X(R,B) − sup MX(R,B)
=: δX,R,B � ∈ R ε ∈ B (3.15)

which provides an enclosure C = {z = ξ + iη: |ξ |, |η| � δX,R,B} for �R(B).
Altogether, if R contains an eigenvalue of the truncated problem (3.4), (3.5) and if C ⊂ B,

then R + C contains an eigenvalue of the original problem, see (3.9).

Remark 3.4. Note that the approximation to y2 which is used to bound the denominator in
(3.8) away from zero need not generally be particularly accurate. It is the numerator in (3.8),
decreasing exponentially as a function of X, which generally plays the most important rôle
in determining the eigenvalue error. In particular, the fact that the numerator is exponentially
small as a function of X shows that the eigenvalue error will typically be much smaller than,
say, the error in the computed value of y2(0, λ). This is why we do not try to obtain eigenvalue
enclosures directly from computed enclosures for y2(0, λ).
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3.2. Solving the truncated problem with guaranteed error bounds (step A)

For the purpose of numerical solution, we treat the approximating problem in the form (3.4),
(3.5) rather than in the form (3.2), (3.3). In principle, the strategy is straightforward: let Y be the
solution of (3.4) starting from the initial conditions Y (X,�) = exp(−√−�X), Y ′(X,�) =
−√−� exp(−√−�X), and let f (�) := Y (0,�),� ∈ C; now proceed as follows:

• The function f is analytic and the zeros of f are the eigenvalues of (3.2), (3.3). Find a
box R guaranteed to contain a zero of f by using Rouché’s theorem.

• For this, calculate the values of f (�) solving the initial value problem for Y (·,�) starting
from x = X and integrating to x = 0, using an ODE solver capable of delivering a solution
with guaranteed error bounds. We do this using the VNODE code of Nedialkov, which
implements the ideas described by Nedialkov, Jackson and Pryce in [18, 19].

The second of these two steps is not different, in principle, from the approach in [7] for the self-
adjoint case. We therefore examine how Rouché’s theorem can be implemented numerically
to give guaranteed error bounds, bearing in mind that the function f is known numerically,
not symbolically as would normally be required for a guaranteed-error integration.

Suppose that an eigenvalue approximation � has been calculated, together with an error
estimate or guess. One may then construct a rectangle R in the complex plane, containing
� in its interior; one wishes to know whether or not R really contains an eigenvalue of the
problem (3.4), (3.5). To this end, we employ the following lemma.

Lemma 3.5. Let f be defined as above and (µj )
N
j=0 be a sequence of points on ∂R with

µN = µ0 and containing the corners of R, chosen so that for each j = 1, . . . , N ,∣∣∣∣arg

(
f ([µj−1, µj ])

f (µj−1)

)∣∣∣∣ < π/2 (3.16)

where by f ([µj−1, µj ]) we mean the image under f of the line segment from µj−1 to µj ,
and by arg we mean the argument such that arg(z) ∈ (−π, π] for z �= 0. Then the number of
eigenvalues of the problem (3.4), (3.5) in R equals

1

2π

N∑
j=1

arg

(
f (µj )

f (µj−1)

)
. (3.17)

Proof. As f has no poles in R, the number of eigenvalues in R is

1

2π i

∫
∂R

f ′(z)
f (z)

dz.

Since the (µj )
N
j=0 satisfy (3.16), they also satisfy

−π/2 < arg

(
f (z)

f (µj−1)

)
< π/2 z ∈ [µj−1, µj ] j = 1, . . . , N.

Thus f (z)/f (µj−1) never crosses a cut-line of the argument function for z ∈ [µj−1, µj ], j =
1, . . . , N , and so

1

2π i

∫
∂R

f ′(z)
f (z)

dz = 1

2π

N∑
j=1

arg

(
f (µj )

f (µj−1)

)
.

This completes the proof. �

An interval enclosing the value of (3.17) can be evaluated from intervals enclosing the
values of the f (µj), thus (3.17) can be dealt with purely numerically. If the enclosure is small
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enough so that it contains only one integer, then the number of eigenvalues in R is known
exactly.

The ability of the initial value code which computes f (·) to accept a complex interval
valued parameter as an argument is vital for checking (3.16). The initial value code is able
to accept the line segment [µj−1, µj ] as input in place of λ and to return a rectangle in the
complex plane containing the set f ([µj−1, µj ]); thus, at least in principle, (3.16) is easy to
check.

Remark 3.6. In practice, difficulties can arise if the eigenvalue is close to the boundary of the
box R, as it may then become extremely difficult to compute sets containing f ([µj−1, µj ])
which do not contain 0 at the same time. (Recall that f (λ) = 0 when λ is an eigenvalue.) If 0
is contained in any of these sets then condition (3.16) will immediately be violated. One can
attempt to overcome these problems by

• choosing more points µj on ∂R to make the sets f ([µj−1, µj ]) smaller;
• choosing a bigger box R (but at the expense of a slacker bound on the eigenvalue error)

so that ∂R is further from the eigenvalue, so that arg(f ) does not vary so rapidly;
• tightening the tolerance in the numerical computation of f ([µj−1, µj ]) (at the expense

of longer run-times).

For ill-conditioned problems, where f is very small over large regions, it may be numerically
impossible to satisfy the conditions (3.16) with any reasonable choice of R.

4. Description of the algorithm and numerical results

4.1. The algorithm

In this section we describe how the algorithm is implemented and present some numerical
results with a discussion of the choice of the parameters. The following parameters are needed
as input to the algorithm:

X endpoint for the regular problem,
αX upper bound for

∫ ∞
X

|q(x)| dx,
εB determining the (initial) set B by B = [−εB, εB] × [−εB, εB],
εZ desired precision for an eigenvalue box R,
εL lower bound for |µj − µj−1|, j = 1, . . . , N , in remark 3.6,
Ea absolute tolerance, see remark 4.1 below,
R0 box where eigenvalues are sought.

To get a good choice of a box R0, one can solve the eigenvalue problem using floating point
arithmetic.

The algorithm consists of the following steps:

Step A. Find a small box R such that R contains an eigenvalue of the regular problem (3.4),
(3.5). This is done with contour integration described in section 3.2.

1. Calculate the number of eigenvalues in R0 according to (3.17) in lemma 3.5. We consider
this step failed if for the calculation of the contour integral along ∂R0 the condition
|µj − µj−1| � εL is violated.

2. If step 1 did not fail and there are eigenvalues in R0, divide R0 into two boxes R′
0 and R′′

0
(horizontally or vertically depending on which of width and height of R0 is greater) and
apply step 1 to R0 := R′

0 and R0 := R′′
0 respectively.
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Continue until boxes are found which contain an eigenvalue of the problem (3.4, (3.5) and
whose lengths are smaller than εZ.
Step B. Having determined a box R according to step A which is guaranteed to contain an
eigenvalue of the truncated problem, check whether R + B also contains an eigenvalue of the
original problem:

1. Calculate the enclosure Ĩ X(R,B) as described in subsection 3.1.2. To this end, solve
simultaneously the differential equations for Y2(·,�) and for ỹ2(·,�, ε, κ1, κ2) with
interval valued �, ε and κi , and compute the integral

∫ X

0 ỹ2(x,�, ε, κ1, κ2)Y2(x,�) dx.

The latter is achieved by introducing a new variable w with w′ = −ỹ2Y2 and w(X) = 0
and then evaluating w(0).

2. Compute MX(R,B) and δX,R,B in (3.15) and check whether δX,R,B � εB. If yes, then
R + C contains an eigenvalue of the original problem (1.1), (1.2), where C is the box of
the form [−δX,R,B, δX,R,B] × [−δX,R,B, δX,R,B].

3. If step 2 was successful, then set B := C and restart with step 1.

If step 2 was successful at least once, then the boxR + C is guaranteed to contain an eigenvalue
of the original problem (1.1), (1.2).

Remark 4.1. To integrate the IVPs we use the class SOLVER 2 from the VNODE package.
When using this validated solver for our purpose, the absolute tolerance Ea (see [18,
section 3.4]) for the variable step size control turned out to be crucial. Smaller values
for Ea result in a more accurate enclosure for the solution, thus making the contour integral in
step A more unlikely to fail; however, this also rapidly increases the time needed for integration.
We will see its effects in the examples in the next section.

4.2. Examples

In this final section we present three examples for problem (1.1), (1.2) with different potentials
q. The first has been chosen to explain the performance of the algorithm in detail, the second
one is a Squire problem and the third one is a resonance problem.

4.2.1. q(x) = 10i e−x . This example is designed to demonstrate the strategy in finding
enclosures, the effects of the various parameters listed above and the performance of the code
in detail. Setting the parameters

X := 10 εZ := 10−2 εL := 10−20 Ea := 10−12 R0 := [0.1, 3] × [0.1, 3]

our reference machine (2 GHz Pentium IV running Linux) took more than 11 min to
produce the enclosure R1 = 2.81309

0742 + 2.17305
6738 i for an eigenvalue of the truncated problem5.

Thus, in general it is a good idea to use floating point methods for getting a first guess
on the location of the eigenvalues. Nevertheless, we use R0 := R1 now for further
calculations. Fixing the remaining parameters and decreasing the desired precision εZ, the
algorithm finally fails in subdividing the rectangle R2 = 2.812267294690

351 + 2.17223816519
484 i

(starting from R0 = R1, this took about 3 min and 40 s). Using the upper bound
αX = 4.54 × 10−4 and an initial εB = 10−5, step B of the algorithm yields R2 + C2 =
2.812267380

209 + 2.172238250
080 i as a rectangle containing an eigenvalue of the original problem.

(In fact, step B was applied three times, and the diameters of the sets C obtained were bounded
by 8.448463695×10−8, 8.435722689×10−8, 8.435722523×10−8, so there was no significant
improvement after the first application.)
5 The notation 2.81309

0742 indicates the interval [2.80742, 2.81309].
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Figure 1. Eigenvalues for q(x) = iR sin x ·e−x , R = 5, . . . , 100; dotted lines connect eigenvalues
for the same R.

As stated in remark 4.1, a smaller value for Ea results in a better enclosure of eigenvalues
in step A. But as we have seen above, the size of C2 is also rather large, so that an
enlargement of the truncation interval seems appropriate. Indeed restarting the process with
R0 := R1,X = 11, αX = 6.2 × 10−5 and Ea := 10−30 yields the following slightly better
result after about 33 min:

R3 = 2.8122672901981
73 + 2.17223818885794

27 i R3 + C3 = 2.812267292
89 + 2.1722381899

78 i.

4.2.2. q(x) = iR sin x · e−x . Proceeding as in the previous example,we calculated enclosures
for the eigenvalues of the following (Squire’s) problem

−y ′′(x) + iR sin x · e−xy(x) = λy(x) x ∈ [0,∞) (4.1)

for Reynolds numbers R = 5, 10, . . . , 100, truncating at X = 10 in most cases. The results
are shown in table 1 and figure 1. It seems that with growing Reynolds number R, more
eigenvalues emerge from the essential spectrum [0, ∞).

4.2.3. q(x) = x2 exp(−eiθ 0.2x2). Finally we considered resonances of the problem

(Ly)(x) := −y ′′(x) + x2 e−0.2x2
y(x) = λy(x) x ∈ [0,∞) (4.2)

with y(0) = 0 using the complex scaling method, see [2, section 5]. This operator describes
quantum particles trapped by a rotationally invariant barrier through which they may tunnel and
escape to infinity. Let θ ∈ (0, π/2). With the formal transformation (Uθy)(x) = eiθ/2y(eiθx),
the resonances of (4.2) are e−iθ times the eigenvalues of the operator

(T y)(x) := (UθLU−1
θ y)(x) = −y ′′(x) + x2 exp(−eiθ 0.2x2)y(x).

Using θ = 1.5 and X = 33, we have found enclosures for seven resonances, which are listed
in table 2; see also figure 2. The first resonance has been calculated in [2] using floating point
arithmetic.
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Table 1. Eigenvalues for the potential q(x) = iR sin x · e−x for R = 5, 10, . . . , 100.

R Box enclosing the eigenvalue Error

5 1.08198482
78 + 0.427035690

59i 3 × 10−8

10 1.604391258
44 + 1.797884981

67i 2 × 10−8

15 1.94312696896
86 + 3.24237501654

44 i 1 × 10−10

20 2.19343181462
46 + 4.714011053891

15 i 2 × 10−10

25 2.39158054889
28 + 6.1980188654

49i 6 × 10−10

30 2.55564161435
19 + 7.68818701819

03 i 2 × 10−10

6.3746591
12 + 2.469955

46i 8 × 10−6

35 2.69601591886
70 + 9.18152057484

76 i 2 × 10−10

6.9851292
88 + 3.703431

29i 3 × 10−7

40 2.8192635596
83 + 10.6764667142

35i 2 × 10−9

7.53181695
89 + 4.974269872

24i 5 × 10−8

45 2.92979131192
62 + 12.17219564081

20 i 6 × 10−10

8.0268500474
44 + 6.2666269496

42i 6 × 10−9

50 3.03069850863
32 + 13.66826866389

28 i 6 × 10−10

8.479142581
75 + 7.575672563

59i 5 × 10−9

55 3.12424177260
29 + 15.16447018981

51 i 3 × 10−10

8.8954638196
71 + 8.8978724695

70i 3 × 10−9

60 3.21210865975
44 + 16.66071663127

11 i 3 × 10−10

9.281093874
64 + 10.230564561

56i 10−8

65 3.2955877752
45 + 18.15700432182

21 i 6 × 10−10

9.6402440882
34 + 11.571696663

58i 5 × 10−9

70 3.3756792653
46 + 19.6533784575

68i 6 × 10−10

9.976337433
13 + 12.919656430

19i 2 × 10−8

15.1603763
56 + 4.73819188

24i 7 × 10−7

75 3.45316923351
20 + 21.1499139321

14 i 6 × 10−10

10.292201591
85 + 14.2731569243

18i 5 × 10−9

15.8104375
47 + 5.9341374

47i 3 × 10−6

80 3.52868140698
37 + 22.6467031795

88 i 6 × 10−10

10.590205880
41 + 15.63115742

37i 4 × 10−8

16.4279836
29 + 7.14467297

43i 6 × 10−7

85 3.6027139575
68 + 24.1438482762

49i 2 × 10−9

10.87236031
28 + 16.99280692

89i 2 × 10−8

17.0160371
63 + 8.3680054

41i 2 × 10−6

90 3.6756663496
89 + 25.6414557094

87i 6 × 10−10

11.140389312
08 + 18.357403412

07i 5 × 10−9

17.5771961
54 + 9.6026136

29i 7 × 10−7

95 3.747859312
08 + 27.1396328569

44i 3 × 10−9

11.395786953
43 + 19.724363575

65i 10−8

18.11371851
24 + 10.84720047

31i 3 × 10−7

100 3.8195499522
15 + 28.6384855724

11i 2 × 10−9

11.63985941
39 + 21.093199978

68i 10−8

18.6275782
78 + 12.1006473

69i 4 × 10−7
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Figure 2. Resonances for the potential q(x) = x2 e−0.2x2
.

Table 2. Resonances for q(x) = x2 e−0.2x2
.

Box R + C enclosing the resonance Bound for the error

2.0282561807422
15 − 0.2499499460632

25i 7 × 10−13

3.2751297335997
71 − 2.4726183648273

47i 3 × 10−12

3.974098103635
14 − 6.100992723437

20i 2 × 10−11

4.071420040863
57 − 10.6443394965167

14i 6 × 10−12

3.952702918017
08 − 16.430949042227

13i 2 × 10−11

3.66733855154
45 − 20.863005473174

03 i 9 × 10−11

3.8343858111
08 − 24.64757551431

11 i 2 × 10−10
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Appendix. Introduction to interval arithmetic and initial value problem enclosure
algorithms

In this appendix we give a brief overview of the concepts of interval arithmetic that are needed
in this work together with a short account of interval based initial value problem solvers.

All computer realizations of algorithms consist of finitely many instances of the four basic
operations of arithmetic. When these are applied to real numbers, modelled in a finite number
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of bits, rounding errors can occur. Interval arithmetic seeks to provide safe upper and lower
bounds on a calculation which take these into account. A simple minded implementation of
this concept would lead to an explosion in the interval width and many sophisticated techniques
are available to control this problem [3].

An interval based initial value problem (IVP) solver is a computer program that, given an
ODE with symbolically defined coefficients and intervals in which numerical parameter values
lie, together with a value x of the independent variable at which the solution is required, returns
a u-interval which is an enclosure of the solution value u(x). It uses the arithmetic operations
described above to perform the calculations and also uses algorithms that take account of the
other approximation errors which must also contribute to the width of the final enclosure.

More specifically, suppose that the ODE is the IVP

u′ = f (x, u) u(0) = u0 (A.1)

where f : [0,∞) × R
n → R

n is sufficiently smooth. An approach to enclose the solution
of the IVP uses a polynomial to model the solution in the x-interval [x0, x0 + h] together
with some truncation error ε(x0, h). The error term is usually not known exactly but often
fixed-point arguments implemented in interval arithmetic are used to obtain interval valued
upper and lower bounds for this error term. It is often the case that in order to implement
this approach and get tight enclosures, a high degree polynomial needs to be used. This
means that the coefficient function in the IVP must be differentiable a suitable number of
times. The coefficients are specified in a symbolic form to the program and an automatic
differentiation package is used to calculate the required derivatives, without the need of a
symbolic algebra system. In any given implementation much effort is expended to ensure that
the interval enclosures are as tight as possible. We refer the reader to [16, 19] for details of
actual implementations. Lohner [16] reports on a work where a Taylor polynomial is used
to approximate the solution while the method chosen in [19] is an Obrechkoff method and is
therefore based on Padé approximants.

References

[1] Abramov A A, Aslanyan A and Davies E B 2001 Bounds on complex eigenvalues and resonances J. Phys. A:
Math. Gen. 34 57–72

[2] Aslanyan A and Davies E B 2000 Spectral instability for some Schrödinger operators Numer. Math. 85 525–52
[3] Alefeld G and Herzberger J 1983 Introduction to Interval Computations (New York: Academic)
[4] Bailey P B, Garbow B S, Kaper H G and Zettl A 1991 A FORTRAN software package for Sturm–Liouville

problems ACM Trans. Math. Softw. 17 500–1
Bailey P B, Garbow B S, Kaper H G and Zettl A 1991 Eigenvalue and eigenfunction computations for Sturm–

Liouville problems ACM Trans. Math. Softw. 17 491–9
[5] Brown B M, Eastham M S P, McCormack D K R and Evans W D 1997 Approximate diagonalization in

differential systems and an effective algorithm for the computation of the spectral matrix Math. Proc. Comb.
Phil. Soc. 121 495–517

[6] Brown B M, Eastham M S P, Evans W D and Kirby V G 1994 Repeated diagonalization and the numerical
computation of the Titchmarsh–Weyl m(λ)-function Proc. R. Soc. A 445 113–26

[7] Brown B M, McCormack D K R and Marletta M 2000 Guaranteed error bounds for eigenvalues of singular
Sturm–Liouville problems Math. Nachr. 213 17–33

[8] Brown B M, McCormack D K R, Evans W D and Plum M 1999 On the spectrum of second-order differential
operators with complex coefficients Proc. R. Soc. A 455 1235–57

[9] Davies E B 1999 Pseudo-spectra, the harmonic oscillator and complex resonances Proc. R. Soc. A 455 585–99
[10] Eastham M S P 1989 The Asymptotic Solution of Linear Differential Systems: Applications of the Levinson

Theorem (LMS Monographs, New Series 4) (Oxford: Oxford Science Publications/Clarendon)
[11] Edmunds E E and Evans W D 1987 Spectral Theory and Differential Operators (New York: Clarendon/Oxford

University Press)



Singular Sturm–Liouville problem with a complex potential 3787

[12] Fulton C T and Pruess S 1993 Mathematical software for Sturm–Liouville problems ACM Trans. Math. Softw.
19 360–76

[13] Greenberg L and Marletta M 2001 Numerical solution of non-selfadjoint Sturm–Liouville problems and related
systems SIAM J. Numer. Anal. 38 1800–45

[14] Levinson N 1948 The asymptotic nature of solutions of linear systems of differential equations Duke Math. J.
15 111–26

[15] Lohner R J 1987 Enclosing the solutions of ordinary initial and boundary value problems Computer Arithmetic:
Scientific Computation and Programming Languages (Wiley-Teubner Series in Computer Science)
ed E W Kaucher, U W Kulisch and C Ullrich (Stuttgart: Wiley-Teubner)
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